Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
J Nepal Health Res Counc ; 21(3): 479-485, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38615221

RESUMO

BACKGROUND: Larval source management is an effective measure to control mosquito-borne diseases. Bacillus thuringiensis produces specific insecticidal crystal proteins toxic to mosquito larvae. In many parts of the South East Asian region, Bacillus thuringiensis is used for larval source management. In Nepal, larvicidal Bacillus thuringiensis is not available. The study aims to isolate larvicidal Bacillus thuringiensis from soil samples of Nepal to control mosquitoes. METHODS: Native Bacillus thuringiensis was obtained from soil samples by the acetate selection method. It was identified by observing crystal protein with Coomassie Brilliant Blue stain in a light microscope. The mosquito larvae were collected from different breeding habitats. A preliminary bioassay was performed by inoculating three loopful of 48 hours culture of spherical crystal protein producing Bacillus thuringiensis in a plastic cup containing 25 larvae and 100 ml of sterile distilled water. The cup was incubated at room temperature for 24 hours to observe the mortality of larvae. Further selective bioassay was performed with the isolate which showed 100% mortality, as described above in four replicates along with the negative and positive control. RESULTS: Out of 1385 Bacillus thuringiensis obtained from 454 soil samples, 766 (55.30%) were spherical crystal protein producers, among them, a single strain (14P2A) showed 100% mortality against mosquito larvae. The lethal concentration doses required to kill 50% and 90% of the larval population were 32.35 and 46.77 Parts per million respectively. CONCLUSIONS: The native Bacillus thuringiensis produces the crystal protein effective in killing mosquito larvae. The native Bacillus thuringiensis should be included as a tool to control mosquito-borne diseases in Nepal.


Assuntos
Bacillus thuringiensis , Controle de Mosquitos , Mosquitos Vetores , Animais , Mosquitos Vetores/microbiologia , 60509/prevenção & controle , Nepal , Solo
2.
Cochrane Database Syst Rev ; 4: CD015636, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597256

RESUMO

BACKGROUND: Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated. OBJECTIVES: To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024. SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy. DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE. MAIN RESULTS: One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events. AUTHORS' CONCLUSIONS: The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Aedes/microbiologia , Mosquitos Vetores/microbiologia , Dengue/prevenção & controle
3.
PLoS Pathog ; 20(4): e1012145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598552

RESUMO

Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Wolbachia , Animais , Anopheles/parasitologia , Anopheles/microbiologia , Anopheles/imunologia , Wolbachia/imunologia , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/imunologia , Transcriptoma , Feminino
4.
PLoS Negl Trop Dis ; 18(3): e0012022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484041

RESUMO

Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/genética , Aedes/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Fiji/epidemiologia , Vanuatu
5.
Parasit Vectors ; 17(1): 69, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368353

RESUMO

Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.


Assuntos
Doenças Transmissíveis , Malária , Infecção por Zika virus , Zika virus , Animais , Mosquitos Vetores/microbiologia , Sistema Imunitário , Bactérias
6.
Microbiome ; 11(1): 255, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978413

RESUMO

BACKGROUND: Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome. RESULTS: Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population. CONCLUSION: Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.


Assuntos
Aedes , Vírus da Dengue , Microbiota , Wolbachia , Humanos , Animais , Feminino , Wolbachia/genética , Mosquitos Vetores/microbiologia , Drosophila melanogaster/microbiologia
7.
Parasit Vectors ; 16(1): 406, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936204

RESUMO

BACKGROUND: Local strains of the entomopathogenic fungus Metarhizium pingshaense in Burkina Faso have demonstrated remarkable virulence against malaria vectors, positioning them as promising candidates for inclusion in the future arsenal of malaria control strategies. However, the underlying mechanisms responsible for this virulence remain unknown. To comprehend the fungal infection process, it is crucial to investigate the attachment mechanisms of fungal spores to the mosquito cuticle and explore the relationship between virulence and attachment kinetics. This study aims to assess the adhesion and virulence properties of native Metarhizium fungal strains from Burkina Faso for controlling malaria vectors. METHODS: Fungal strains were isolated from 201 insects and 1399 rhizosphere samples, and four strains of Metarhizium fungi were selected. Fungal suspensions were used to infect 3-day-old female Anopheles coluzzii mosquitoes at three different concentrations (106, 107, 108 conidia/ml). The survival of the mosquitoes was measured over 14 days, and fungal growth was quantified after 1 and 24 h to assess adhesion of the fungal strains onto the mosquito cuticle. RESULTS: All four fungi strains increased mosquito mortality compared to control (Chi-square test, χ2 = 286.55, df = 4, P < 0.001). Adhesion of the fungal strains was observed on the mosquito cuticle after 24 h at high concentrations (1 × 108 conidia/ml), with one strain, having the highest virulent, showing adhesion after just 1 h. CONCLUSION: The native strains of Metarhizium spp. fungi found in Burkina Faso have the potential to be effective biocontrol agents against malaria vectors, with some strains showing high levels of both virulence and adhesion to the mosquito cuticle.


Assuntos
Anopheles , Malária , Metarhizium , Feminino , Animais , Anopheles/microbiologia , Controle de Mosquitos , Burkina Faso , Virulência , Mosquitos Vetores/microbiologia , Esporos Fúngicos
8.
Sci Rep ; 13(1): 18980, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923779

RESUMO

Microorganisms present in mosquitoes and their interactions are key factors affecting insect development. Among them, Wolbachia is closely associated with the host and affects several fitness parameters. In this study, the bacterial and fungal microbiota from two laboratory Culex quinquefasciatus isolines (wild type and tetracycline-cured) were characterized by metagenome amplicon sequencing of the ITS2 and 16S rRNA genes at different developmental stages and feeding conditions. We identified 572 bacterial and 61 fungal OTUs. Both isolines presented variable bacterial communities and different trends in the distribution of diversity among the groups. The lowest bacterial richness was detected in sugar-fed adults of the cured isoline, whereas fungal richness was highly reduced in blood-fed mosquitoes. Beta diversity analysis indicated that isolines are an important factor in the differentiation of mosquito bacterial communities. Considering composition, Penicillium was the dominant fungal genus, whereas Wolbachia dominance was inversely related to that of Enterobacteria (mainly Thorsellia and Serratia). This study provides a more complete overview of the mosquito microbiome, emphasizing specific highly abundant components that should be considered in microorganism manipulation approaches to control vector-borne diseases.


Assuntos
Aedes , Culex , Microbiota , Wolbachia , Animais , Aedes/genética , Bactérias/genética , Culex/genética , Mosquitos Vetores/microbiologia , RNA Ribossômico 16S/genética , Wolbachia/genética
9.
J Insect Physiol ; 151: 104573, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838284

RESUMO

A detailed understanding of how host fitness changes in response to variations in microbe density (an ecological measure of disease tolerance) is an important aim of infection biology. Here, we applied dose-response curves to study Aedes aegypti survival upon exposure to different microbes. We challenged female mosquitoes with Listeria monocytogenes, a model bacterial pathogen, Dengue 4 virus and Zika virus, two medically relevant arboviruses, to understand the distribution of mosquito survival following microbe exposure. By correlating microbe loads and host health, we found that a blood meal promotes disease tolerance in our systemic bacterial infection model and that mosquitoes orally infected with bacteria had an enhanced defensive capacity than insects infected through injection. We also showed that Aedes aegypti displays a higher survival profile following arbovirus infection when compared to bacterial infections. Here, we applied a framework for investigating microbe-induced mosquito mortality and details how the lifespan of Aedes aegypti varies with different inoculum sizes of bacteria and arboviruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Vírus da Dengue , Infecção por Zika virus , Zika virus , Feminino , Animais , Vírus da Dengue/fisiologia , Mosquitos Vetores/microbiologia , Zika virus/fisiologia , Bactérias
10.
Microbiol Spectr ; 11(6): e0218023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811984

RESUMO

IMPORTANCE: Arthropod-borne viruses are emerging pathogens that are spread widely by mosquitos. Zika virus is an arbovirus that can infect humans and be transmitted from an infected mother to the fetus, potentially leading to microcephaly in infants. One promising strategy to prevent disease caused by arboviruses is to target the insect vector population. Recent field studies have shown that mosquito populations infected with Wolbachia bacteria suppress arbovirus replication and transmission. Here, we describe how intracellular bacteria redirect resources within their host cells and suppress Zika virus replication at the cellular level. Understanding the mechanism behind Wolbachia-induced interference of arbovirus replication could help advance strategies to control arbovirus pathogens in insect vectors and human populations.


Assuntos
Aedes , Arbovírus , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/microbiologia , Mosquitos Vetores/microbiologia , Replicação Viral , Colesterol
11.
Parasit Vectors ; 16(1): 142, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098535

RESUMO

BACKGROUND: Wolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde. METHODS: Mosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR-restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1. RESULTS: Nine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species. CONCLUSIONS: A high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives.


Assuntos
Aedes , Culex , Culicidae , Wolbachia , Animais , Culicidae/genética , Wolbachia/genética , Tipagem de Sequências Multilocus , Cabo Verde , Mosquitos Vetores/microbiologia , Culex/genética , Aedes/genética
13.
Acta Trop ; 242: 106891, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907292

RESUMO

Mosquitoes are extensively responsible for the transmission of pathogens. Novel strategies using Wolbachia could transform that scenario, since these bacteria manipulate mosquito reproduction, and can confer a pathogen transmission-blocking phenotype in culicids. Here, we screened the Wolbachia surface protein region by PCR in eight Cuban mosquito species. We confirmed the natural infections by sequencing and assessed the phylogenetic relationships among the Wolbachia strains detected. We identified four Wolbachia hosts: Aedes albopictus, Culex quinquefasciatus, Mansonia titillans, and Aedes mediovittatus (first report worldwide). Knowledge of Wolbachia strains and their natural hosts is essential for future operationalization of this vector control strategy in Cuba.


Assuntos
Aedes , Wolbachia , Animais , Wolbachia/genética , Filogenia , Cuba , Mosquitos Vetores/microbiologia , Aedes/microbiologia
14.
Mol Biochem Parasitol ; 253: 111543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642385

RESUMO

The mosquito gut microbiota is vital to the proper functioning of the host organism. Mosquitoes may benefit from this microbiota in their guts because it promotes factors including blood digestion, fecundity, metamorphosis, and living habitat and inhibits malarial parasites (Plasmodium) growth or transmission. In this overview, we analyzed how mosquitoes acquire their gut microbiota, characterized those bacteria, and discussed the functions they provide. We also investigated the effects of microbiota on malaria vectors, with a focus on the mosquito species Anopheles, as well as the relationship between microbiota and Plasmodium, the aspects in which microbiota influences Plasmodium via immune response, metabolism, and redox mechanisms, and the strategies in which gut bacteria affect the life cycle of malaria vectors and provide the ability to resist insecticides. This article explores the difficulties in studying triadic interactions, such as the interplay between Mosquitoes, Malarial parasite, and the Microbiota that dwell in the mosquitoes' guts, and need additional research for a better understanding of these multiple connections to implement an exact vector control strategies using Gut microbiota in malaria control.


Assuntos
Anopheles , Malária , Microbiota , Parasitos , Plasmodium , Animais , Humanos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Interações Hospedeiro-Parasita , Plasmodium/fisiologia , Malária/parasitologia , Anopheles/parasitologia
15.
Eval Program Plann ; 97: 102205, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36580820

RESUMO

The implementation of new control strategies for Aedes aegypti (Ae. Aegpyti), a vector of dengue, chikungunya, and Zika viruses, requires communities to adopt specific behaviors to achieve the success of these innovations. AIM: We evaluated the effect of an educational intervention based on the Precede-Proceed Model (PPM) and the Diffusion of Innovations Theory (DIT) for the control and prevention of diseases transmitted by Ae. aegypti through release of male mosquitoes infected with Wolbachia bacteria in a suburban town in Yucatan, Mexico. MATERIAL AND METHODS: From July 2019 to February 2020, a quasi-experimental study was carried out through an educational intervention (pre- and post-measurements) using quantitative-qualitative techniques, in a Yucatan suburban town where male mosquitoes with Wolbachia were released for the suppression of Ae. aegypti populations. Eleven educational workshops were attended by heads of household (n = 19) and schoolchildren (n = 11). Other 136 heads of household not attending the workshops received information individually. RESULTS: The educational intervention had a significant effect on the mean scores of the contributing and behavioral factors for adoption of innovation (p < 0.05) in the pre- and post-intervention measurements. CONCLUSION: Innovative methods for the control and prevention of diseases related to Aedes aegypti can be strengthened through educational interventions supported by sound methodologies. DESCRIPTORS: Community health education, Aedes aegypti, Wolbachia, Mexico.


Assuntos
Aedes , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Masculino , Criança , Aedes/microbiologia , México , Mosquitos Vetores/microbiologia , Avaliação de Programas e Projetos de Saúde
16.
Arq. ciências saúde UNIPAR ; 27(3): 1204-1222, 2023.
Artigo em Português | LILACS | ID: biblio-1425455

RESUMO

Introdução: Arbovírus são causadores de doenças humanas, sendo que mudança ecológicas e aumento do contato humano-vetor aumenta a possibilidade de surtos. Objetivo: Detectar, identificar e caracterizar arbovírus presentes em mosquitos vetores capturados em regiões de mata próximas a Três Lagoas, MS. Metodologia: Mosquitos foram capturados utilizando armadilhas de luz em regiões de mata circunvizinha a Três Lagoas. Os mosquitos capturados foram classificados por gênero (chave morfológica) e agrupados em pools com até 20 espécimes, e utilizados através da reação de RT-PCR com posterior sequenciamento e análise filogenética. Resultados: Foram capturados 851 dos gêneros: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) e outros gêneros não identificados. Sequencias de vírus Dengue (DENV) foram amplificadas de 2/13 (15,38%) pools de Aedes spp. e uma sequência de vírus Mayaro (MAYV) 1/7 (7,7%) foi amplificada de pools de Haemagogus spp. As análises filogenéticas mostraram que as sequências de DENV agrupava-se no clado de DENV1 e DENV2. A sequência de MAYV agrupou-se junto a sequências de amostras de infecções humana por MAYV do grupo L. Conclusão: Estes resultados reforçam a circulação de DENV, que é causador de surtos anuais de doenças febris agudas no município, e detecção, por primeira vez na região, a circulação de MAYV, reforçando a necessidade de monitoramento viral constante nessa região.


Introduction: Arboviruses cause human diseases, and ecological changes and increased human-vector contact increase the possibility of outbreaks. Objective: To detect, identify and characterize arboviruses present in mosquito vectors captured in forest regions close to Tres Lagoas, MS. Methodology: Mosquitoes were captured using light traps in forest regions surrounding Tres Lagoas. The captured mosquitoes were classified by gender (morphological key) and grouped into pools with up to 20 specimens and used through the RT-PCR reaction with subsequent sequencing and phylogenetic analysis. Results: 851 of the genera were captured: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) and other unidentified genera. Dengue virus (DENV) sequences were amplified from 2/13 (15.38%) pools of Aedes spp. and a Mayaro virus (MAYV) sequence 1/7 (7.7%) were amplified from pools of Haemagogus spp. Phylogenetic analyzes showed that one of the DENV sequences clustered in the DENV1 and DENV2 clade. The MAYV sequence was grouped together with sequences from samples of human MAYV infections of the L group. Conclusion: These results reinforce the circulation of DENV, which causes annual outbreaks of acute febrile illnesses in the municipality, and detection, for the first time in the region, the circulation of MAYV, reinforcing the need for constant viral monitoring in this region.


Introducción: Los arbovirus causan enfermedades humanas, y los cambios ecológicos y el mayor contacto humano-vector aumentan la posibilidad de brotes. Objetivo: Detectar, identificar y caracterizar arbovirus presentes en mosquitos vectores capturados en regiones de selva próximas a Tres Lagoas, MS. Metodología: Los mosquitos fueron capturados utilizando trampas de luz en las regiones forestales que rodean Tres Lagoas. Los mosquitos capturados fueron clasificados por género (clave morfológica) y agrupados en pools de hasta 20 ejemplares, y utilizados mediante la reacción RT-PCR con posterior secuenciación y análisis filogenético. Resultados: Se capturaron 851 de los géneros: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) y otros géneros no identificados. Las secuencias del virus del dengue (DENV) se amplificaron a partir de 2/13 (15,38 %) grupos de Aedes spp. y una secuencia de virus Mayaro (MAYV) 1/7 (7,7%) de pools de Haemagogus spp. Los análisis filogenéticos mostraron que una de las secuencias de DENV se agrupaba en el clado DENV1 y DENV2. La secuencia de MAYV se agrupó con secuencias de muestras de infecciones humanas de MAYV del grupo L. Conclusión: Estos resultados refuerzan la circulación de DENV, causante de brotes anuales de enfermedades febriles agudas en el municipio, y la detección, por primera vez en la región, la circulación de MAYV, reforzando la necesidad de un monitoreo viral constante en esta región.


Assuntos
Animais , Alphavirus , Aedes/classificação , Culex/microbiologia , Flavivirus , Mosquitos Vetores/microbiologia , RNA Viral , Monitoramento Ambiental/instrumentação , Reação em Cadeia da Polimerase , Epidemiologia/instrumentação , Dengue/epidemiologia , Vírus da Dengue , Culicidae/microbiologia
17.
Parasit Vectors ; 15(1): 191, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668540

RESUMO

BACKGROUND: Dengue is a mosquito-borne viral disease that is mainly spread by Aedes aegypti. It is prevalent on five continents, predominantly in tropical and sub-tropical zones across the world. Wolbachia bacteria have been extensively used in vector control strategies worldwide. The focus of the current study was to obtain a natural population of Ae. aegypti harbouring Wolbachia and to determine the impact of this bacteria on the new host in a semi-field environment. METHODS: Wolbachia-infected Aedes albopictus was collected from the city of Lahore, Punjab, Pakistan, and Wolbachia were successfully introduced into laboratory-reared Ae. aegypti via embryonic microinjection. The stable vertical transmission of wAlbB in the host population was observed for eight generations, and the impact of Wolbachia on the general fitness of the host was evaluated in semi-field conditions. RESULTS: In the laboratory and semi-field experiments, wAlbB Wolbachia presented a strong cytoplasmic incompatibility (CI) effect, evidenced as zero egg hatching, in crosses between Wolbachia-infected males and wild (uninfected) females of Ae. aegypti. Wolbachia infection had no noticeable impact on the general fitness (P > 0.05), fecundity, body size (females and males) and mating competitiveness of the new host, Ae. aegypti. However, there was a significant decrease in female fertility (egg hatch) (P < 0.001). In addition, under starvation conditions, there was a remarkable decrease (P < 0.0001) in the life span of Wolbachia-infected females compared to uninfected females (4 vs. > 5 days, respectively). CONCLUSIONS: Wolbachia strain wAlbB has a great potential to control the dengue vector in Ae. aegypti populations by producing 100% CI with a limited burden on its host in natural field conditions. This strain can be used as a biological tool against vector-borne diseases.


Assuntos
Aedes , Dengue , Wolbachia , Aedes/microbiologia , Animais , Dengue/prevenção & controle , Feminino , Masculino , Microinjeções , Mosquitos Vetores/microbiologia , Paquistão , Controle Biológico de Vetores
18.
Viruses ; 14(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746601

RESUMO

The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.


Assuntos
Aedes , Wolbachia , Aedes/microbiologia , Animais , Feminino , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Dinâmica Populacional
19.
Chaos ; 32(4): 041105, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35489839

RESUMO

Over the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the limited resources to generate such mosquitoes and their effective distribution in large areas dominated by the Aedes aegypti vector represent a challenge for policymakers. Here, we introduce a mathematical framework for the spread of dengue in which competition between wild and Wolbachia-infected mosquitoes, the cross-contagion patterns between humans and vectors, the heterogeneous distribution of the human population in different areas, and the mobility flows between them are combined. Our framework allows us to identify the most effective areas for the release of Wolbachia-infected mosquitoes to achieve a large decrease in the global dengue prevalence.


Assuntos
Aedes/microbiologia , Febre de Chikungunya/prevenção & controle , Dengue/prevenção & controle , Mosquitos Vetores/microbiologia , Wolbachia/fisiologia , Infecção por Zika virus/prevenção & controle , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Dengue/epidemiologia , Dengue/transmissão , Humanos , Controle de Mosquitos/economia , Wolbachia/crescimento & desenvolvimento , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão
20.
FEMS Microbiol Ecol ; 98(1)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35147188

RESUMO

Mosquito larvae are naturally exposed to microbial communities present in a variety of larval development sites. Several earlier studies have highlighted that the larval habitat influences the composition of the larval bacterial microbiota. However, little information is available on their fungal microbiota, i.e. the mycobiota. In this study, we provide the first simultaneous characterization of the bacterial and fungal microbiota in field-collected Aedes aegypti larvae and their respective aquatic habitats. We evaluated whether the microbial communities associated with the breeding site may affect the composition of both the bacterial and fungal communities in Ae. aegypti larvae. Our results show a higher similarity in microbial community structure for both bacteria and fungi between larvae and the water in which larvae develop than between larvae from different breeding sites. This supports the hypothesis that larval habitat is a major factor driving microbial composition in mosquito larvae. Since the microbiota plays an important role in mosquito biology, unravelling the network of interactions that operate between bacteria and fungi is essential to better understand the functioning of the mosquito holobiont.


Assuntos
Aedes , Microbiota , Micobioma , Aedes/microbiologia , Animais , Bactérias/genética , Larva/microbiologia , Mosquitos Vetores/microbiologia , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...